平成30年度 センター試験 (本試 平成30年1月14日実施)

数学 I·数学 A (60 分, 100 点)

第1問 (必答問題)(配点 30)

[2] (1) 全体集合 U を $U = \{x | x$ は 20 以下の自然数 $\}$ とし、次の部分集合 A, B, C を考える。

集合 A の補集合を \overline{A} と表し、空集合を \varnothing と表す。

次の に当てはまるものを、下の のうちから一つ選べ。

集合の関係 (a) $A \subset C$ (b) $A \cap B = \emptyset$ の正誤の組合せとして正しいものは \top す である。

	0	0	2	3
(a)	正	正	誤	誤
(p)	正	誤	正	誤

集合の関係 (c) $(A \cup C) \cap B = \{6, 12, 18\}$ (d) $(\overline{A} \cap C) \cup B = \overline{A} \cap (B \cup C)$ の正誤の組合せとして正しいものは っ である。

	0	0	2	3
(C)	正	正	誤	誤
(d)	正	誤	正	誤

(2) 実数 x に関する次の条件 p, q, r, s を考える。

$$p: |x-2| > 2$$
, $q: x < 0$, $r: x > 4$, $s: \sqrt{x^2} > 4$

q または r であることは,p であるための $\boxed{$ ケ 。また,s は r であるための $\boxed{$ つ 。

- ⑥ 必要条件であるが、十分条件ではない
- ① 十分条件であるが、必要条件ではない
- ② 必要十分条件である
- ③ 必要条件でも十分条件でもない
- [3] a を正の実数とし $f(x) = ax^2 2(a+3)x 3a + 21$ とする。 2 次関数 y = f(x) のグラフの頂点の x 座標を p とおくと

$$p = \boxed{ } + \frac{ }{a}$$
 である。

また、 $0 \le x \le 4$ における関数 y = f(x) の最小値が f(p) となるような a の値の範囲は $\boxed{\ \ t \ \ } \le a$ である。

したがって、 $0 \le x \le 4$ における関数 y = f(x) の最小値が 1 であるのは

第 2 問 (必答問題)(配点 30)

[1] 四角形 ABCD において、3 辺の長さをそれぞれ AB= 5、BC=9、CD=3、対角線 A C の長さを AC= 6 とする。このとき

ここで、四角形 ABCD は台形であるとする。

- (0) < (1) =
- ③ 辺ADと辺BCが平行④ 辺ABと辺CDが平行

- [2] ある陸上競技大会に出場した選手の身長(単位は cm)と体重(単位は kg)のデータが得られた。男子短距離、男子長距離、女子短距離、女子長距離の四つのグループに分けると、それぞれのグループの選手数は、男子短距離が328人、男子長距離が271人、女子短距離が319人、女子長距離が263人である。
 - (1) 次ページの図 1^{*1} および図 2^{*1} は,男子短距離,男子長距離,女子短距離,女子 長距離の四つのグループにおける,身長のヒストグラムおよび箱ひげ図である。

図1および図2から読み取れる内容として正しいものは、 $\boxed{}$ サ $\boxed{}$ 、 $\boxed{}$ である。

- (0) 四つのグループのうちで範囲が最も大きいのは、女子短距離グループである。
- ① 四つのグループのすべてにおいて、四分位範囲は 12 未満である。
- (2) 男子長距離グループのヒストグラムでは, 度数最大の階級に中央値が入っている。
- ③ 女子長距離グループのヒストグラムでは、度数最大の階級に第1四分位数が入っている。
- ④ すべての選手の中で最も身長の高い選手は、男子長距離グループの中にいる。
- (5) すべての選手の中で最も身長の低い選手は、女子長距離グループの中にいる。
- ⑥ 男子短距離グループの中央値と男子長距離グループの第3四分位数は、ともに 180以上182未満である。
- (2) 身長を H, 体重を W とし,X を $X = \left(\frac{H}{100}\right)^2$ で,Z を $Z = \frac{W}{X}$ で定義する。 次ページの図 3^{*1} は,男子短距離,男子長距離,女子短距離,女子長距離の四つの グループにおける X と W のデータの散布図である。ただし,原点を通り,傾きが 15, 20, 25, 30 である四つの直線 l_1 , l_2 , l_3 , l_4 も補助的に描いている。また, 次ページの図 4^{*1} の (a), (b), (c), (d) で示す Z の四つの箱ひげ図は,男子短距離,男子長距離,女子短距離,女子長距離の四つのグループのいずれかの箱ひげ図に 対応している。

次の $\begin{bmatrix} z \end{bmatrix}$, $\begin{bmatrix} t \end{bmatrix}$ に当てはまるものを、下の $\begin{bmatrix} 0 \end{bmatrix}$ ~ $\begin{bmatrix} 5 \end{bmatrix}$ のうちから一つずつ選べ。ただし、解答の順序は問わない。

図 3 および図 4 から読み取れる内容として正しいものは, $\begin{bmatrix} z \end{bmatrix}$, $\begin{bmatrix} t \end{bmatrix}$ である。

- \bigcirc 四つのグループのすべてにおいて、X と W には負の相関がある。
- ① 四つのグループのうちで Z の中央値が一番大きいのは,男子長距離グループである。
- ② 四つのグループのうちで Z の範囲が最小なのは、男子長距離グループである。
- ③ 四つのグループのうちで Z の四分位範囲が最小なのは、男子短距離グループである。
- 4 女子長距離グループのすべての Z の値は 25 より小さい。
- (5) 男子長距離グループの Z の箱ひげ図は (c) である。

^{*1)} 原文のまま。図 1, 図 2, 図 3, 図 4 は著作権の関係で本誌には未掲載。

(3) n を自然数とする。実数値のデータ x_1 , x_2 , \cdots , x_n および w_1 , w_2 , \cdots , w_n に対して、それぞれの平均値を

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}, \quad \overline{w} = \frac{w_1 + w_2 + \dots + w_n}{n}$$
 \succeq $$$$

等式 $(x_1 + x_2 + \cdots + x_n)\overline{w} = n\overline{x}\overline{w}$ などに注意すると、偏差の積の和は

$$(x_1 - \overline{x})(w_1 - \overline{w}) + (x_2 - \overline{x})(w_2 - \overline{w}) + \dots + (x_n - \overline{x})(w_n - \overline{w})$$

$$=x_1w_1+x_2w_2+\cdots+x_nw_n \forall$$
 となることがわかる。

- \bigcirc $\overline{x}\overline{w}$
- $(1) (\overline{x}\overline{w})^2 \qquad (2) n\overline{x}\overline{w} \qquad (3) n^2\overline{x}\overline{w}$

第 3 問 (選択問題)(配点 20)

一般に、事象 A の確率を P(A) で表す。また、事象 A の余事象を \overline{A} と表し、二つの事象 A, B の積事象を $A \cap B$ と表す。

大小2個のさいころを同時に投げる試行において

Aを「大きいさいころについて、4の目が出る」という事象

Bを「2個のさいころの出た目の和が7である」という事象

C を「2個のさいころの出た目の和が9である」という事象 とする。

(1) 事象 A, B, C の確率は, それぞれ

$$P(A) = \frac{\boxed{r}}{\boxed{1}}, \quad P(B) = \frac{\boxed{r}}{\boxed{r}}, \quad P(C) = \frac{\boxed{r}}{\boxed{r}}$$
 である。

(2) 事象 C が起こったときの事象 A が起こる条件付き確率は・

べ。ただし、同じものを繰り返し選んでもよい。

$$P(A \cap B)$$
 \uparrow $P(A)P(B)$ $P(A \cap C)$ \triangleright $P(A)P(C)$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

(4) 大小 2 個のさいころを同時に投げる試行を 2 回繰り返す。1 回目に事象 $A \cap B$ が起こ

れもちょうど1回ずつ起こる確率は _____ である。

第 4 問 (選択問題)(配点 20)

- (3) 144 の倍数で,7 で割ったら余りが1 となる自然数のうち,正の約数の個数が18 個である最小のものは $144 \times$ ス であり,正の約数の個数が30 個である最小のものは $144 \times$ セソ である。

第 5 問 (選択問題)(配点 20)

 \triangle ABC において AB = 2, AC = 1, \angle A = 90° とする。 \angle A の二等分線と辺 BC との交点 を D とすると,BD = $\frac{r}{2}$ である。

点 A を通り点 D で辺 BC に接する円と辺 AB との交点で A と異なるものを E とすると,

$$AB \cdot BE = \frac{\boxed{\mathtt{r}}}{\boxed{\mathtt{h}}} \quad \texttt{cbship}, \ BE = \frac{\boxed{\mathtt{r}}}{\boxed{\mathtt{f}}} \quad \texttt{cbs}.$$

点 D は △ABF の タ 。

- (0) 外心である
- (1) 内心である
- (2) 重心である

③ 外心,内心,重心のいずれでもない

数学 II・数学 B (60 分, 100 点)

第 1 問 (必答問題)(配点 30)

- [1] (1) 1 ラジアンとは, \boxed{p} のことである。 \boxed{p} に当てはまるものを,次の $\boxed{0} \sim \boxed{3}$ のうちから一つ選べ。
 - ① 半径が1, 面積が1の扇形の中心角の大きさ
 - (1) 半径が π , 面積が1の扇形の中心角の大きさ
 - ② 半径が1, 弧の長さが1の扇形の中心角の大きさ
 - (3) 半径が π , 弧の長さが1の扇形の中心角の大きさ

 - $\begin{array}{ll} (3) & \frac{\pi}{2} \leq \theta \leq \pi \ \text{の範囲で} \\ & 2\sin\left(\theta + \frac{\pi}{5}\right) 2\cos\left(\theta + \frac{\pi}{30}\right) = 1 \cdots \end{array}$ を満たす θ の値を求めよう。 $x = \theta + \frac{\pi}{5}$ とおくと,① は

$$2\sin x - 2\cos\left(x - \frac{\pi}{2}\right) = 1$$
 と表せる。

加法定理を用いると,この式は

$$\sin x - \sqrt{2}\cos x = 1$$
 となる。さらに,三角関数の合成を用いると $\sin \left(x - \frac{\pi}{7}\right) = \frac{1}{2}$ と変形できる。

$$x=\theta+\frac{\pi}{5}$$
, $\frac{\pi}{2} \le \theta \le \pi$ だから, $\theta=\frac{$ サシ π である。

[2] c を正の定数として,不等式 $x^{\log_3 x} \ge \left(\frac{x}{c}\right)^3 \cdots$ ② を考える。 3 を底とする ② の両辺の対数をとり, $t = \log_3 x$ とおくと

 $t^{\bigcirc}-$ g t+ g $\log_3 c \ge 0 \cdots \cdots$ ③ となる。ただし、対数 $\log_a b$ に対し、a を底といい、b を真数という。

 $c = \sqrt[3]{9}$ のとき、② を満たす x の値の範囲を求めよう。③ により

$$t \leq \lceil \mathcal{F} \rceil$$
, $t \geq \lceil \mathcal{V} \rceil$ である。

- $\overline{}$ に当てはまるものを,次の $\overline{0}$ \sim $\overline{3}$ のうちから一つ選べ。
 - ① 正の実数全体
- ① 負の実数全体

(2) 実数全体

③ 1以外の実数全体

この範囲の t に対して、③ がつねに成り立つための必要十分条件は、 $\log_3 c$ ある。すなわち, $c \ge \sqrt{\boxed{\hspace{1cm}}}$ である。

第 2 問 (必答問題)(配点 30)

- [1] p>0 とする。座標平面上の放物線 $y=px^2+qx+r$ を C とし、直線 y=2x-1 を ℓ とする。C は点 A(1,1) において ℓ と接しているとする。
 - (1) $q \ge r \ \epsilon$, $p \ge \epsilon$ を用いて表そう。放物線 $C \ge 0$ 点 A における接線 ℓ の傾きは ℓ であることから、 $q = \boxed{ \ \ \, } p + \boxed{ \ \ \, }$ がわかる。さらに、C は点 A を通るこ とから, r = p - オ となる。
 - (2) v>1 とする。放物線 C と直線 ℓ および直線 x=v で囲まれた図形の面積 S は

$$S = \frac{p}{ \boxed{ \ \ \, } } \left(v^3 - \boxed{ \ \ } \ \ \, v^2 + \boxed{ \ \ \, } \ \, v - \boxed{ \ \ \, \tau \ } \right) \ \, \tilde{\text{CbS}}},$$

また、x 軸と ℓ および 2 直線 x=1、x=v で囲まれた図形の面積 T は、 $T = v^{\square} - v$ τ σ σ σ σ

U=S-T は v=2 で極値をとるとする。このとき,p= サ v>1 の範囲で U=0 となる v の値を v_0 とすると, $v_0=$ $\frac{\boxed{} \qquad \boxed{} + \sqrt{\boxed{}}$ である。 $1 < v < v_0$ の範囲でU は V 。

 $\overline{}$ に当てはまるものを、次の $\overline{}$ のうちから一つ選べ。

- (0) つねに増加する(1) つねに減少する(2) 正の値のみをとる ③ 負の値のみをとる ④ 正と負のどちらの値もとる

 $p = \boxed{}$ のとき、v > 1 における U の最小値は $\boxed{}$ のある。

[2] 関数 f(x) は $x \ge 1$ の範囲でつねに $f(x) \le 0$ を満たすとする。 t > 1 のとき、曲線 y = f(x) と x 軸および 2 直線 x = 1, x = t で囲まれた図形の面積を W とする。 tがt>1の範囲を動くとき、Wは、底辺の長さが $2t^2-2$ 、他の2辺の長さがそれぞ れ t^2+1 の二等辺三角形の面積とつねに等しいとする。このとき、x>1 における f(x))を求めよう。

F(x) を f(x) の不定積分とする。一般に、F'(x) = ッ 、W = テ が成り ただし,同じものを選んでもよい。

- (0) F(t)
- \bigcirc F(t)
- (2) F(t) F(1)

したがって、t>1 において $f(t)=\lceil r+r \rceil t^{\lfloor t \rfloor}+\lceil r \rceil$ である。よって、t>1 に おける f(x) がわかる。

第 3 問 (選択問題)(配点 20)

第 4 項が 30、初項から第 8 項までの和が 288 である等差数列を $\{a_n\}$ とし、 $\{a_n\}$ の初項か ら第n 項までの和を S_n とする。また,第2 項が36,初項から第3 項までの和が156 である 等比数列で公比が 1 より大きいものを $\{b_n\}$ とし, $\{b_n\}$ の初項から第 n 項までの和を T_n と する。

$$\{a_n\}$$
 の初項は $oxed{r}$ アイ 、公差は $oxed{j}$ 立 であり $S_n = oxed{ }$ オ $oxed{n}^2 - oxed{ }$ カキ $oxed{n}$ である。

$$\{b_n\}$$
 の初項は 2τ , 公比は \Box であり $T_n = \begin{bmatrix} + \end{bmatrix} \begin{pmatrix} \boxed{\flat} & ^n - \boxed{\gimel} \end{pmatrix}$ である。

(3) 数列 $\{c_n\}$ を次のように定義する。

$$c_n = \sum_{k=1}^n (n-k+1)(a_k - b_k)$$

= $n(a_1 - b_1) + (n-1)(a_2 - b_2) + \dots + 2(a_{n-1} - b_{n-1}) + (a_n - b_n)$
 $(n = 1, 2, 3, \dots)$

たとえば

 $c_1 = a_1 - b_1$, $c_2 = 2(a_1 - b_1) + (a_2 - b_2)$, $c_3 = 3(a_1 - b_1) + 2(a_2 - b_2) + (a_3 - b_3)$ である。数列 $\{c_n\}$ の一般項を求めよう。

 $\{c_n\}$ の階差数列を $\{d_n\}$ とする。 $d_n=c_{n+1}-c_n$ であるから, $d_n=$ セ |を満た す。 $\boxed{}$ に当てはまるものを、次の $\boxed{}$ のうちから一つ選べ。

(0)
$$S_n + T_n$$

$$(1)$$
 $S_{ij} = T_{ij}$

$$(2)$$
 $-S_n + T_n$

$$(3)$$
 $-S_n-T_n$

(5)
$$S_{n+1} - T_{n+1}$$

(7)
$$-S_{n+1}-T_{n+1}$$

であるから、 $\{c_n\}$ の一般項は

第 4 問 (選択問題)(配点 20)

a を 0 < a < 1 を満たす定数とする。三角形 ABC を考え, 辺 AB を 1:3 に内分する 点を D, 辺 BC を a:(1-a) に内分する点を E, 直線 AE と直線 CD の交点を F とする。

(2) FD を $\stackrel{\rightarrow}{p}$ と $\stackrel{\rightarrow}{q}$ を用いて表すと

$$\overrightarrow{\mathrm{FD}} = \frac{ \ \, \overleftarrow{} \ \, \overrightarrow{} \ \,$$

(3) s, t をそれぞれ $\overrightarrow{FD} = \overrightarrow{sr}, \overrightarrow{FE} = \overrightarrow{tp}$ となる実数とする。s と t を a を用いて表 $\overrightarrow{\mathrm{FD}} = \overrightarrow{sr}$ であるから、② により

$$\overrightarrow{q} = \boxed{ *7 } \overrightarrow{p} + \boxed{ 7 } \overrightarrow{s} \overrightarrow{r} \cdots 3 \text{ $\it{cb3}$. \it{kt}, $\overrightarrow{FE} = t \it{p} $\it{cb3}$. $\it{b5}$}$$

$$\overrightarrow{q} = \boxed{ t } \overrightarrow{p} - \boxed{ } \overrightarrow{p} - \boxed{ } \overrightarrow{p} - \boxed{ } \overrightarrow{r} \cdots 4 \text{ $\it{cb3}$.}$$

③ と ④ により

$$\begin{vmatrix} \overrightarrow{BE} \end{vmatrix}^2 = \boxed{y} \left(\boxed{3} - \boxed{4} \right)^2 + \boxed{7} \left(\boxed{3} - \boxed{4} \right) \overrightarrow{p} \cdot \overrightarrow{q} + \left| \overrightarrow{q} \right|^2$$

$$= \boxed{b + - \boxed{2}}$$

第5問 (選択問題)(配点 20)

以下の問題を解答するにあたっては、必要に応じて 29 ページの正規分布表*2)を用いても よい。

a を正の整数とする。2, 4, 6, \cdots , 2a の数字がそれぞれ一つずつ書かれた a 枚の (1)カードが箱に入っている。この箱から1枚のカードを無作為に取り出すとき、そこに書か れた数字を表す確率変数をXとする。

^{*2)} 原文のまま。正規分布表は本誌には未掲載。

t は定数で $s > 0$ のとき, $sX + t$ の平均が 20,	分散が 32 となるように s , t を定	めると,
$s=$ $\boxed{}$ オ $\boxed{}$, $t=$ $\boxed{}$ カ である。このとき,	sX+t が 20 以上である確率は 0 .	+
である。		

(2) (1) の箱のカードの枚数 a は 3 以上とする。この箱から 3 枚のカードを同時に取り出 し、それらのカードを横1列に並べる。この試行において、カードの数字が左から小さい 順に並んでいる事象をAとする。このとき、事象Aの起こる確率は

この試行を 180 回繰り返すとき、事象 A が起こる回数を表す確率変数を Y とすると、 36 回以下起こる確率の近似値を次のように求めよう。

率の近似値は次のようになる。

$$P\left(18 \leqq Y \leqq 36\right) = P\left(- \boxed{\text{t}} \right). \boxed{\text{VI}} \leqq Z \leqq \boxed{\text{F}} . \boxed{\text{VF}} = 0. \boxed{\text{FF}}$$

(3) ある都市での世論調査において、無作為に400人の有権者を選び、ある政策に対する賛 否を調べたところ、320人が賛成であった。この都市の有権者全体のうち、この政策の賛 成者の母比率 p に対する信頼度 95 %の信頼区間を求めたい。

この調査での賛成者の比率(以下,これを標本比率という)は 0. = である。標 本の大きさが400と大きいので、二項分布の正規分布による近似を用いると、pに対する 信頼度 95 %の信頼区間は 0. ヌネ $\leq p \leq 0.$ ノハ である。

母比率 p に対する信頼区間 $A \le p \le B$ において,B - A をこの信頼区間の幅とよぶ。 以下, R を標本比率とし, p に対する信頼度 95 %の信頼区間を考える。

上で求めた信頼区間の幅を L_1

標本の大きさが 400 の場合に R=0.6 が得られたときの信頼区間の幅を L_2 標本の大きさが 500 の場合に R=0.8 が得られたときの信頼区間の幅を L_3 とする。このとき、 L_1 , L_2 , L_3 について \Box が成り立つ。 ヒ に当てはまるも

のを,次の(0)~(5)のうちから一つ選べ。

- (3) $L_2 < L_3 < L_1$ (4) $L_3 < L_1 < L_2$
- (5) $L_3 < L_2 < L_1$